Skip to main content

System F is Amazing - Part II

As I mentioned in my last post System-F is amazing. I haven't written in a very long time because I have been busy ensuring that I graduate. I passed my viva finally! So now that I'm back in the real world I thought I'd talk a bit about things that I found while I was in my cave. I'll put my dissertation up with some notes when I've completed the revisions.

Those who have dealt with proof assistants based on type theories (Such as Agda and Coq) might have noticed that we often require types to have a positivity restriction. This restriction essentially states that you can't have non-positive occurrences of the recursive type variable. As I described earlier, System F avoids this whole positivity restriction by forcing the programmer to demonstrate that constructors themselves (as a Church encoding) can be implemented, avoiding the problem of uninhabited types being inadvertently asserted.

So this means that in some sense positivity is probably the same thing as saying that there is an algorithmic method of translation of a data-type into System-F. I suspect (but can not yet prove) it also means that we should be allowed to write down datatypes as long as we can show that the inductive or coinductive types are inhabited by a Church encoding! If we could also do this trick for the Calculus of Constructions it might give a tricky way to increase the number of (co)inductive types we are allowed to write down.

Now, I'll write down an example of what I'm talking about in System-F, embedded in the propositional fragment of Coq (which is suitably impredicative), so that you can see a very straightforwardly non-positive type which has a Church encoding. This example of the LamMu type came from Andreas Abel's paper on sized types (which one I forget!) where he demonstrates that his system allows the definition.

In the very final entry we attempt to enter LamMu into the Coq Inductive type framework and watch it fail (for reasons of positivity violation). The original type definition gives us three constructors, each of which is proved in turn below by a "constructor".

Definition LamMu := forall (X : Prop),
  (Nat -> X) ->
  (Nat -> List X -> X) ->
  ((forall (Y : Prop), ((X -> Y) -> Y)) -> X) -> X.

Definition var : Nat -> LamMu :=
  fun (n : Nat) =>
    fun (X : Prop)
      (v : Nat -> X)
      (f : Nat -> List X -> X)
      (m : (forall (Y : Prop), ((X -> Y) -> Y)) -> X) =>
      v n.

Definition func : Nat -> List LamMu -> LamMu :=
  fun (n : Nat) =>
    fun (t : List LamMu) =>
      fun (X : Prop)
        (v : Nat -> X)
        (f : Nat -> List X -> X)
        (m : (forall (Y : Prop), ((X -> Y) -> Y)) -> X) =>
        f n (t (List X) (nil X) (fun (x : LamMu) (y : List X) => cons (x X v f m) y)).

Definition mu : (forall (Y : Prop), (LamMu -> Y) -> Y) -> LamMu.
Proof.
  unfold LamMu.
  refine
    (fun (zi : (forall (Y : Prop), (LamMu -> Y) -> Y)) =>
      fun (X : Prop)
        (v : Nat -> X)
        (f : Nat -> List X -> X)
        (m : (forall (Y : Prop), ((X -> Y) -> Y)) -> X) =>
        m (fun (Y : Prop) (g : X -> Y) =>
          g (zi X (fun e : LamMu => e X v f m)))).
Defined.

Inductive LamMu2 : Type :=
| Var : Nat -> LamMu2
| Fun : Nat -> LamMu2 -> LamMu2
| Mu : ((forall Y, ((LamMu2 -> Y) -> Y)) -> LamMu2) -> LamMu2

Comments

Popular posts from this blog

Decidable Equality in Agda

So I've been playing with typing various things in System-F which previously I had left with auxiliary well-formedness conditions. This includes substitutions and contexts, both of which are interesting to have well typed versions of. Since I've been learning Agda, it seemed sensible to carry out this work in that language, as there is nothing like a problem to help you learn a language. In the course of proving properties, I ran into the age old problem of showing that equivalence is decidable between two objects. In this particular case, I need to be able to show the decidability of equality over types in System F in order to have formation rules for variable contexts. We'd like a context Γ to have (x:A) only if (x:B) does not occur in Γ when (A ≠ B). For us to have statements about whether two types are equal or not, we're going to need to be able to decide if that's true using a terminating procedure. And so we arrive at our story. In Coq, equality is ...

Teagrey

I was ironing my shirt today, which I almost never do. Because of this I don't have an ironing board so I tried to make a make-shift ironing board on my floor using a towel and some books. I grabbed the heaviest books on the nearest shelf, which happened to be Organic Chemistry, Stalingrad and an annotated study bible containing the old and new testament. As I pulled out the bible, a flower fell out which had been there for over 17 years now. I know that because it was put there by my first wife, Daniel, who killed herself in April about 17 years ago. It fell from Thessalonians to which it had been opened partially. Highlighted was the passage: "Ye are all sons of the light and sons of the day." I guess the passage gave her solace. Daniel was a complicated woman. She had serious mental health issues which plagued her for her entire life. None of them were her fault. She was dealt an absolutely awful hand in life, some truly nasty cards. She had some considerable c...

Total Functional Programming

Recently on Lambda the Ultimate there was a post called "Total Functional Programming".  The title didn't catch my eye particularly, but I tend to read the abstract of any paper that is posted there that doesn't sound terribly boring.  I've found that this is a fairly good strategy since I tend to get very few false positives this way and I'm too busy for false negatives. The paper touches directly and indirectly on subjects I've posted about here before.  The idea is basically to eschew the current dogma that programming languages should be Turing-complete, and run with the alternative to the end of supplying "Total Functional Programming" .  At first glance this might seem to be a paper aimed at "hair-shirt" wearing functional programming weenies.  My reading was somewhat different. Most hobbiest mathematicians have some passing familiarity with "Turing's Halting Problem" and the related "Goedel's Inco...