Skip to main content

How a real module system should work

I've been playing with the Coq proof assistant over the past few days, following closely on some frustrations that I've been having with using SML's module system and a bit of toying with type-classes in Haskell.

The gist of the problem is this. Although you can define type-classes and modules such that external users of these modules/type-classes see a uniform interface, consistency is left as an exercise for the implementer. This is not really acceptable in my view. When you are writing software, often times *you* are the implementer. What you really want is for these modules not just to provide a consistent interface to outsiders, but to guarantee the correctness of the implementation! Isn't that the whole point of types? If we can't do that, why are we using types?

Ok, so in Coq I *can* get the properties I've been wanting out of SML's module system. For instance take the following implementation of the Monad signature:

Module Type MONAD.
Set Implicit Arguments. 

Parameter M : forall (A : Type), Type.
Parameter bind : forall (A B : Type), 
  M A -> (A -> M B) -> M B.
Parameter ret : forall (A : Type), 
  A -> M A.

Infix ">>=" := bind (at level 20, left associativity) : monad_scope.
Open Scope monad_scope.

Axiom left_unit : forall (A B : Type) (f : A -> M B) (a : A), 
  (ret a) >>= f = f a.
Axiom right_unit : forall (A B : Type) (m : M A), 
  m >>= (fun a : A => ret a) = m.
Axiom bind_assoc : forall (A B C : Type) (m : M A) (f : A -> M B) (g : B -> M C) (x : B), 
  (m >>= f) >>= g = m >>= (fun x => (f x) >>= g).


This signature describes something much like the monad that is given by the type-class in haskell. I neglected some stuff like implementing join from bind etc, but we can safely ignore that for now. The point is that users of the MONAD signature can't just fake a monad by supplying an implementation that is nominally the same. i.e. In order to implement this MONAD you actually have to have the right signature for ">>=" *AND* you have to satisfy the monad laws. So what does an implementation look like? Here is an example:

Module ListMonad < : MONAD. 

Require Import List.

Set Implicit Arguments.
Definition M := list.

Fixpoint bind (A : Type) (B : Type) (l : M A) (f : A -> M B) {struct l} : M B := 
  match l with 
    | nil => nil 
    | h::t => (f h)++(bind t f)

Infix ">>=" := bind (at level 20, left associativity) : monad_scope.
Open Scope monad_scope.

Definition ret (A : Type) := fun a : A => a::nil.

Lemma left_unit : forall (A B : Type) (f : A -> M B) (a : A), 
 (ret a) >>= f = f a. 
  intros. simpl. rewrite app_nil_end. reflexivity.

Lemma right_unit : forall (A B : Type) (m : M A), 
  m >>= (fun a : A => ret a) = m.
  simple induction m. 
    simpl. reflexivity. 
    intros. simpl.
    cut (bind l (fun a0 : A => ret a0) = l).
      intros. rewrite H0. reflexivity.
      exact H.

Lemma bind_assoc : forall (A B C : Type) (m : M A) (f : A -> M B) (g : B -> M C) (x : B), 
  (m >>= f) >>= g = m >>= (fun x => (f x) >>= g).
  simple induction m. 
    intros. simpl. reflexivity.
    intros. simpl. 
    cut (l >>= f >>= g = l >>= (fun x0 : A => f x0 >>= g)).
      intros. rewrite < - H0.
      induction (f a). 
        simpl. reflexivity.
        simpl. rewrite IHm0. rewrite app_ass. reflexivity.
      apply H. exact x.

End ListMonad.

(* Example *)
Import ListMonad.
Require Import Peano.
Require Import List.

Fixpoint downfrom (n : nat) {struct n} : (list nat) := 
  match n with 
    | 0 => n::nil
    | S m => n::(downfrom m)

Eval compute in (1::2::3::4::nil) >>= downfrom.
  = 1 :: 0 :: 2 :: 1 :: 0 :: 3 :: 2 :: 1 :: 0 :: 4 :: 3 :: 2 :: 1 :: 0 :: nil
     : M nat

Ok, That took me about an hour to write. I'm not really that good at using Coq, so presumably you could do this more elegantly and in less time. In any case it would be nice if the proofs could be automated a bit more. That aside this is a *much* better situation than we have in SML and Haskell. We have provided a monad that is guaranteed to actually be one!

I'm of the growing opinion that software that is forced to meet specifications will end up being less trouble in the end than the current state of free-wheeling wild-west style implementation.

Coq gives a civilized alternative to the current free-for-all. Coq can help us make good on the promise that "well typed programs can't go wrong".


Popular posts from this blog

Managing state in Prolog monadically, using DCGs.

Prolog is a beautiful language which makes a lot of irritating rudimentary rule application and search easy. I have found it is particularly nice when trying to deal with compilers which involve rule based transformation from a source language L to a target language L'.

However, the management of these rules generally requires keeping track of a context, and this context has to be explicitly threaded through the entire application, which involves a lot of irritating and error prone sequence variables. This often leads to your code looking something a bit like this:

compile(seq(a,b),(ResultA,ResultB),S0,S2) :- compile(a,ResultA,S0,S1), compile(b,ResultB,S1,S2).
While not the worst thing, I've found it irritating and ugly, and I've made a lot of mistakes with incorrectly sequenced variables. It's much easier to see sequence made explicitly textually in the code.

While they were not designed for this task, but rather for parsing, DCGs turn out to be a convenient …

Generating etags automatically when needed

Have you ever wanted M-. (the emacs command which finds the definition of the term under the cursor) to just "do the right thing" and go to the most current definition site, but were in a language that didn't have an inferior process set-up to query about source locations correctly (as is done in lisp, ocaml and some other languages with sophisticated emacs interfaces)?

Well, fret no more. Here is an approach that will let you save the appropriate files and regenerate your TAGS file automatically when things change assuring that M-. takes you to the appropriate place.

You will have to reset the tags-table-list or set it when you first use M-. and you'll want to change the language given to find and etags in the 'create-prolog-tags function (as you're probably not using prolog), but otherwise it shouldn't require much customisation.

And finally, you will need to run etags once manually, or run 'M-x create-prolog-tags' in order to get the initia…

Decidable Equality in Agda

So I've been playing with typing various things in System-F which previously I had left with auxiliary well-formedness conditions. This includes substitutions and contexts, both of which are interesting to have well typed versions of. Since I've been learning Agda, it seemed sensible to carry out this work in that language, as there is nothing like a problem to help you learn a language.

In the course of proving properties, I ran into the age old problem of showing that equivalence is decidable between two objects. In this particular case, I need to be able to show the decidability of equality over types in System F in order to have formation rules for variable contexts. We'd like a context Γ to have (x:A) only if (x:B) does not occur in Γ when (A ≠ B). For us to have statements about whether two types are equal or not, we're going to need to be able to decide if that's true using a terminating procedure.

And so we arrive at our story. In Coq, equality is som…