Skip to main content

Addition in the lambda calculus

I just spent a couple of very cold weeks in Anchorage Alaska.  I went out with a bunch of friends to a bar on the night prior to leaving, where I met up with an old friend (and listened to two other friends play music).  I started describing the lambda calculus to him since it is related to my work and he was curious what I was up to.  In any case I found myself unable to produce addition of the church numerals off the top of my head, which I found pretty disturbing since it shows that I probably didn't quite understand it in the first place.  Therefor I sat down this morning to see if I couldn't reconstruct it from first principles. 

It turns out that it is relatively easy. First, let us start with a bit of notation, and a description of the lambda calculus.  Since wikipedia describes the lambda calculus in detail, I'll just show how one procedes with calculations.  As examples let us start with the church numerals

1 = (λf x.f x)
2 = (λf x.f f x)
3 = (λf x.f f f x)
...
n = (λf x.fn x)

where fn means "f f ... f" n times.

The idea is that each numeral is represented by a lambda term.  The lambda term describes the arguments (f and x in this case) and the "body" in which we substitute the arguments when the are passed in.  An example of an "application" of a lambda term to an argument would be:

1 g = (λf x . f x) g => (λx . g x)

We pass in g, and replace every occurance of f in the body with g, and delete f from the list of variables.  we can continue to apply this term to another term

(λx . g x) y => g y

Which leads us to conclude that

1 g y => g y

Ok, so now that you've seen a few calculations, let us try to construct addition.  The first thing I tried to do is to construct the function +1.  Clearly, we want +1 n => (n+1).  n+1 is (λf x. f(n+1) x) which is also (λf x. f fn x).  Since n = (λf x. fn x) we need to somehow add another f.  The trick is to get the arguments to use the same symbols, and to remove the lambda abstraction.  We can do this by applying the church numeral to the symbols we want to use, in this case f and x.

(λf x. fn x) f x => fn x

So now we know how to get rid of the lambda abstraction.  Now we can add an f on the front, which will get us closer to n+1.

f (λf x. fn x) f x => f fn x

We are almost there.  Now we need to have the λf x part at the beggining so that we look like a church numeral.

(λf x. f (λf x. fn x) f x) => (λf x. f fn x) = (λf x. f(n+1) x)

Looking great so far!  Now we just need to be able to take the whole (λf x. fn x) form as an argument.  This turns out to be really easy, we just put a variable in it's place and add it to the front of the list of lambda arguments.

(λa f x. f a f x) (λf x . fn x) => (λf x. f (λf x. fn x) f x) => (λf x. f fn x)

This shows that (λa f x. f a f x) is the +1 function! 

+1 = (λa f x. f a f x)

Ok, so now that we have +1 can we get a function that takes an n and returns +n?  This would get us a long way towards addition.  We can call this function n->+n.

Ok, so we can guess what +n will look like easily.  It's going to look just like +1 except with n leading f's.

+n = (λa f x. fn a f x)

So we should try to figure out how to take the fn out of a church numeral, and place it there.  Well, we should apply the same trick of applying the church numeral to f and x so that we can extract the body.

(λf x . fn x) f x => fn x

ok, but really we want a to follow, based on +n, so instead of using x, let us apply the form to a.

(λf x . fn x) f a => fn a

Great!  Look how close we are. now we just need to abstract the a,f,x and place f x following it.
(λa f x. (λf x . fn x) f a f x) => (λa f x. fn a f x)

Ok, so now that we know how to take an n, and able to take the entire church numeral n as an a beta reduce it to n+1, let us abstract the n as an argument

(λb a f x. b f a f x)

Let us verify quickly that this function works.

(λb a f x. b f a f x) n =>
(λa f x. n f a f x) =>
(λa f x. (λf x. fn x) f a f x) =>
(λa f x. fn a f x)

Now, we can verify that this works on m, to obtain n+m as the +n function should:

(λa f x. fn a f x) m =>
(λf x. fn (λf x. fm x) f x) =>
(λf x. fn fm x) = (λf x. f(n+m) x) = n+m

Hooray! Not only did we find n->+n, but we have obtained the function "addition" for free.  Since, once we have the +n function we can apply it to m.  So we now have the function:

add = (λb a f x. b f a f x)

I haven't tried multiplication and exponentiation yet, but you are welcome to try!

Comments

Popular posts from this blog

Managing state in Prolog monadically, using DCGs.

Prolog is a beautiful language which makes a lot of irritating rudimentary rule application and search easy. I have found it is particularly nice when trying to deal with compilers which involve rule based transformation from a source language L to a target language L'. However, the management of these rules generally requires keeping track of a context, and this context has to be explicitly threaded through the entire application, which involves a lot of irritating and error prone sequence variables. This often leads to your code looking something a bit like this: compile(seq(a,b),(ResultA,ResultB),S0,S2) :- compile(a,ResultA,S0,S1), compile(b,ResultB,S1,S2). While not the worst thing, I've found it irritating and ugly, and I've made a lot of mistakes with incorrectly sequenced variables. It's much easier to see sequence made explicitly textually in the code. While they were not designed for this task, but rather for parsing, DCGs turn out to be a conveni

Decidable Equality in Agda

So I've been playing with typing various things in System-F which previously I had left with auxiliary well-formedness conditions. This includes substitutions and contexts, both of which are interesting to have well typed versions of. Since I've been learning Agda, it seemed sensible to carry out this work in that language, as there is nothing like a problem to help you learn a language. In the course of proving properties, I ran into the age old problem of showing that equivalence is decidable between two objects. In this particular case, I need to be able to show the decidability of equality over types in System F in order to have formation rules for variable contexts. We'd like a context Γ to have (x:A) only if (x:B) does not occur in Γ when (A ≠ B). For us to have statements about whether two types are equal or not, we're going to need to be able to decide if that's true using a terminating procedure. And so we arrive at our story. In Coq, equality is

Teagrey

I was ironing my shirt today, which I almost never do. Because of this I don't have an ironing board so I tried to make a make-shift ironing board on my floor using a towel and some books. I grabbed the heaviest books on the nearest shelf, which happened to be Organic Chemistry, Stalingrad and an annotated study bible containing the old and new testament. As I pulled out the bible, a flower fell out which had been there for over 17 years now. I know that because it was put there by my first wife, Daniel, who killed herself in April about 17 years ago. It fell from Thessalonians to which it had been opened partially. Highlighted was the passage: "Ye are all sons of the light and sons of the day." I guess the passage gave her solace. Daniel was a complicated woman. She had serious mental health issues which plagued her for her entire life. None of them were her fault. She was dealt an absolutely awful hand in life, some truly nasty cards. She had some considerable c