Skip to main content

Proof Theory

Thanks to my brother I got a really cool book on proof theory called "Basic Proof Theory". It has a bunch of nice features including a from the ground up presentation of proof theory that should be relatively accesible to anyone with a background in mathematics. It demonstrates some of the connections provided by the Curry-Howard correspondance (which is my favourite part of the book) . It also describe Second order logic, which is great because I've had very little formal exposure to this. Second order logic is really beautiful since you can define all the connectives in terms of ∀, ∀2 and →. If you pun ∀ and ∀2 you have a really compact notation.

The book also forced me to learn some things I hadn't wrapped my head around. One of those was Gentzen style sequent calculus. This really turns out to be pretty easy when you have a good book describing it. I've even wrote a little sequent solver (in lisp) since I found the proofs so much fun. The first order intuisionistic sequent solver is really not terribly difficult to write. Basically I treat the proofs as goal directed starting with a sequent of the form:

⇒ F

And try to arive at leaves of the tree that all have the form:

A ⇒ A

I have already proven that 'F ⇒ F' for compound formulas F from 'A ⇒ A' so I didn't figure it was neccessary to make the solver do it. The solver currently only works with propositional formula (it solves a type theory where types are not parameteric.) but I'm interested in limited extensions though I haven't thought much about that. I imagine I quickly get something undecidable if I'm not careful.

Anyhow working with the sequent calculus got me thinking about → In the book they present the rule for R→ as such


Γ,A ⇒ Δ,B
Γ ⇒ A→B,Δ



This is a bit weird since there is nothing that goes the other direction. ie. for non of: Minimal, Intuisionistic or Classical logic do you find a rule in which you introduce a connective in the left from formulas in the right. I started looking around for something that does this and I ran into Basic Logic. I haven't read the paper yet so I can't really comment on it. I'll let you know after I'm done with it.

Comments

Popular posts from this blog

Decidable Equality in Agda

So I've been playing with typing various things in System-F which previously I had left with auxiliary well-formedness conditions. This includes substitutions and contexts, both of which are interesting to have well typed versions of. Since I've been learning Agda, it seemed sensible to carry out this work in that language, as there is nothing like a problem to help you learn a language. In the course of proving properties, I ran into the age old problem of showing that equivalence is decidable between two objects. In this particular case, I need to be able to show the decidability of equality over types in System F in order to have formation rules for variable contexts. We'd like a context Γ to have (x:A) only if (x:B) does not occur in Γ when (A ≠ B). For us to have statements about whether two types are equal or not, we're going to need to be able to decide if that's true using a terminating procedure. And so we arrive at our story. In Coq, equality is ...

Managing state in Prolog monadically, using DCGs.

Prolog is a beautiful language which makes a lot of irritating rudimentary rule application and search easy. I have found it is particularly nice when trying to deal with compilers which involve rule based transformation from a source language L to a target language L'. However, the management of these rules generally requires keeping track of a context, and this context has to be explicitly threaded through the entire application, which involves a lot of irritating and error prone sequence variables. This often leads to your code looking something a bit like this: compile(seq(a,b),(ResultA,ResultB),S0,S2) :- compile(a,ResultA,S0,S1), compile(b,ResultB,S1,S2). While not the worst thing, I've found it irritating and ugly, and I've made a lot of mistakes with incorrectly sequenced variables. It's much easier to see sequence made explicitly textually in the code. While they were not designed for this task, but rather for parsing, DCGs turn out to be a conveni...

Call by Name (CBN) is dual to Call By Value (CBV)

Probably one of the best papers I've read on the relationship between CBN, CBV and the Curry-Howard correspondance is the paper Call-by-value is dual to call-by-name by Wadler. The calculus he develops for describing the relationship shows an obvious schematic duality that is very visually appealing. After reading the paper that I mentioned earlier on Socially Responsive, Environmentally Friendly Logic (which shall henceforth be called SREF Logic), it struck me that it would be interesting to see what a CPS ( Continuation-passing Style ) like construction looks like in SREF logic, so I went back to the Wadler paper to see if I could figure out how to mimic the technique for multi-player logic. It looks like the formulation by Wadler comes out directly by thinking about logic as a two player game! I'm excited to see what happens with n-player logic. This has been a big diversion from what I'm actually suppose to be working on but I didn't want to forget about i...