Skip to main content

Wish List

I've often had questions that I wanted answers to and didn't know who to ask.  Sometimes the questions are unanswerable unless some mighty alien intelligence were to come and give them to me.  Often times however, they are questions that should in principle be answerable.  Here are some questions from my current wish list.

1. Is it the case that the operational procedures that are used to "prove" queries in logic programming languages are exactly program extraction?  Am I missing something in this picture?

2. The Curry-Howard correspondence gives rise to a simple logic as the type calculus in functional programming languages.  In a language like Haskell this means that you write mostly in the functional programming language and most of logical implications are infered using Hindley-Milner type inference.  If we go to the other extreme we see things like Coq that allow us to do program extraction (extraction of a functional program) from a logical specification.  My question is if it is possible to do something more like what Haskell does.  Namely, allow the user to occasionally describe the functional program associated with the specification.  This would be like writing types and having program inference, rather than writing programs with type inference.

3. I've spent a lot of time thinking about transactional logic since it seems critical that we deal with schema evolution and  encorporation of new facts.  How exactly does the Curry-Howard correspondence relate to schema evolution?

4. In the same vein as 3.  Is it possible to have schema evolution of types in a functional programming language by using atomic transactional code insertion.  Clearly without some sort of atomism we will be able to arive at inconsistent/type-unsafe intermediate stages.

5.  What logical type calculus is sufficent to capture the Deutch-Josza algorithm if we assume that the usual matrix algebra is the appropriate combinitor calculus for implementing  quantum algorithms (ie. what is the explicit Curry-Howard correspondence).

Anyone sensing a theme here?  I'm totally in love with the CH correspondence.  If you don't know about it.  You aught to go look it up on wikipedia and read a bit!

Comments

Popular posts from this blog

Decidable Equality in Agda

So I've been playing with typing various things in System-F which previously I had left with auxiliary well-formedness conditions. This includes substitutions and contexts, both of which are interesting to have well typed versions of. Since I've been learning Agda, it seemed sensible to carry out this work in that language, as there is nothing like a problem to help you learn a language. In the course of proving properties, I ran into the age old problem of showing that equivalence is decidable between two objects. In this particular case, I need to be able to show the decidability of equality over types in System F in order to have formation rules for variable contexts. We'd like a context Γ to have (x:A) only if (x:B) does not occur in Γ when (A ≠ B). For us to have statements about whether two types are equal or not, we're going to need to be able to decide if that's true using a terminating procedure. And so we arrive at our story. In Coq, equality is ...

Managing state in Prolog monadically, using DCGs.

Prolog is a beautiful language which makes a lot of irritating rudimentary rule application and search easy. I have found it is particularly nice when trying to deal with compilers which involve rule based transformation from a source language L to a target language L'. However, the management of these rules generally requires keeping track of a context, and this context has to be explicitly threaded through the entire application, which involves a lot of irritating and error prone sequence variables. This often leads to your code looking something a bit like this: compile(seq(a,b),(ResultA,ResultB),S0,S2) :- compile(a,ResultA,S0,S1), compile(b,ResultB,S1,S2). While not the worst thing, I've found it irritating and ugly, and I've made a lot of mistakes with incorrectly sequenced variables. It's much easier to see sequence made explicitly textually in the code. While they were not designed for this task, but rather for parsing, DCGs turn out to be a conveni...

Call by Name (CBN) is dual to Call By Value (CBV)

Probably one of the best papers I've read on the relationship between CBN, CBV and the Curry-Howard correspondance is the paper Call-by-value is dual to call-by-name by Wadler. The calculus he develops for describing the relationship shows an obvious schematic duality that is very visually appealing. After reading the paper that I mentioned earlier on Socially Responsive, Environmentally Friendly Logic (which shall henceforth be called SREF Logic), it struck me that it would be interesting to see what a CPS ( Continuation-passing Style ) like construction looks like in SREF logic, so I went back to the Wadler paper to see if I could figure out how to mimic the technique for multi-player logic. It looks like the formulation by Wadler comes out directly by thinking about logic as a two player game! I'm excited to see what happens with n-player logic. This has been a big diversion from what I'm actually suppose to be working on but I didn't want to forget about i...