Skip to main content

Posts

Showing posts from 2012

Formalisation of Tables in a Dependent Language

I've had an idea kicking about in my head for a while of making query plans explicit in SQL in such a way that one can be assured that the query plan corresponds to the SQL statement desired. The idea is something like a Curry-Howard in a relational setting. One could infer the plan from the SQL, the SQL from the plan, or do a sort of "type-checking" to make sure that the plan corresponds to the SQL. The devil is always in the details however. When I started looking at the primitives that I would need, it turns out that the low level table joining operations are actually not that far from primitive SQL statement themselves. I decided to go ahead and formalise some of what would be necessary in Agda in order get a better feel for the types of objects I would need and the laws which would be required to demonstrate that a plan corresponded with a statement. Dependent types are very powerful and give you plenty of rope to hang yourself. It's always something...

Decidable Equality in Agda

So I've been playing with typing various things in System-F which previously I had left with auxiliary well-formedness conditions. This includes substitutions and contexts, both of which are interesting to have well typed versions of. Since I've been learning Agda, it seemed sensible to carry out this work in that language, as there is nothing like a problem to help you learn a language. In the course of proving properties, I ran into the age old problem of showing that equivalence is decidable between two objects. In this particular case, I need to be able to show the decidability of equality over types in System F in order to have formation rules for variable contexts. We'd like a context Γ to have (x:A) only if (x:B) does not occur in Γ when (A ≠ B). For us to have statements about whether two types are equal or not, we're going to need to be able to decide if that's true using a terminating procedure. And so we arrive at our story. In Coq, equality is ...